Design of Experiments in Measurement System Characterization and Uncertainty

Tom Johnson 03/22/11

Outline

- 1. In-Flight Force Measurement Method
- 2. Non-monolithic Calibration Design
- 3. Variable Acceleration Calibration System
- 4. Center of Gravity Determination Method

In-Flight Force Measurement Method

- What is the problem?
 - There is a requirement for an alternative method to monitor in-flight loads experienced by a particular spacecraft during launch
- Why does it matter?
 - To properly understand the physics of the problem
 - To ensure the safety of the spacecraft
 - to achieve a successful launch
- Who does it matter to?
 - Engineers, researchers
 - Customers using the delta II rocket
 - Boeing to maintain a reliable track record
- Project Objective
 - Monitor loads exerted on spacecraft during launch (pre-determined)
 - Adapt a structural piece of a Boeing delta II rocket, called a Payload Attachment Fitting (PAF), into multicomponent force transducer (also predetermined)
- What is the PAF?

"A Multi-Component Force Transducer Design from an Existing Rocket Payload Attachment Fitting," Johnson,T.; Landman,D; Parker, P.; AIAA-2009-1716, AIAA USAF T and E Days 2009, Albuquerque, NM, February 10-12, 2009.

In-Flight Force Measurement Method

- Proposed Solution Framework
 - First, optimize strain gauge locations on the PAF using computer simulation (Finite Element Analysis)
 - 2. Instrument PAF according to strain gauge location optimization study
 - 3. Perform a ground based calibration
 - 4. Use in-flight data with the calibration models to obtain in-flight forces
- Strain gauge optimization method
 - Objective: determine strain gauge locations that maximize the sensitivity of the reading for a given force component, while minimizing interactions effects due to other forces.
 - Using design of experiment, a factorial design was run to model strain as a function of applied forces at each element in the FEA model.
 - Factors (6): applied loads
 - Responses (>10,000): strain at each element

$$y_n = \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$$

In-Flight Force Measurement Method

- optimization method (continued)
 - The next step of the problem is to find combinations of 4 strain locations that maximizes sensitivity while minimizing interaction effects
 - Since Wheatstone bridges require 4 gauges
 - Numerical search method used to find best combination of gauges for each model
 - 4 gauges for each component resulted in 24 gauge locations total
- Optimization results
 - Approximate 10 lb resolution
- Proposed next steps
 - Instrument the PAF
 - Perform ground based calibration
- Conclusion
 - A completely unique method for determining gauge location methods was demonstrated
 - Design of experiments was used to make efficient use of computational resources

Strain at a finite element

n – varies from 1 to 12,302 , 1 for each element of the finite element model

Outline

- 1. In-Flight Force Measurement Method
- 2. Non-monolithic Calibration Design
- 3. Variable Acceleration Calibration System
- 4. Center of Gravity Determination Method

Non-Monolithic Calibration Design

- What is a force balance?
- What is the problem?
 - It is nationally recognized that current methods used to model non-monolithic force balances is inadequate
- Why does it matter?
 - There are many non-monolithic balances currently being used to characterize the performance of tomorrows space vehicles
 - The performance of future missions relies on the accuracy of wind tunnel tests
- Who does it matter to?
 - Force measurement community
 - AIAA reccommended standard calibration practices document
 - Project leaders
- Project Objective
 - Demonstrate shortcomings of current recommended procedure
 - Propose alternative solutions

What is a non-monolithic balance?

Applied Normal Force (lbs)

Johnson, T. H., Parker, P.A., Landman, D., "Calibration Modeling of Nonmonolithic Wind-Tunnel Force Balances," AIAA-46356-110, AIAA Journal of Aircraft, Vol. 47, No. 6, Nov-Dec 2010.

NSES

Non-Monolithic Calibration Design

- Current standard procedure recommends using the model shown below
- Takes a heavily parameterized approach
- Includes absolute value terms to model asymmetry in the response
- The problem with the model is that it is over parameterized

$$\begin{split} R_i &= a_i + \sum_{j=1}^n b \mathbf{1}_{i,j} F_j + \sum_{j=1}^n b \mathbf{2}_{i,j} \big| F_j \big| + \sum_{j=1}^n c \mathbf{1}_{i,j} F_j^2 \\ &+ \sum_{j=1}^n c \mathbf{2}_{i,j} F_j \big| F_j \big| + \sum_{j=1}^n \sum_{k=j+1}^n c \mathbf{3}_{i,j,k} F_j F_k \\ &+ \sum_{j=1}^n \sum_{k=j+1}^n c \mathbf{4}_{i,j,k} \big| F_j F_k \big| + \sum_{j=1}^n \sum_{k=j+1}^n c \mathbf{5}_{i,j,k} F_j \big| F_k \big| \\ &+ \sum_{j=1}^n \sum_{k=j+1}^n c \mathbf{6}_{i,j,k} \left| F_j \right| F_k + \sum_{j=1}^n d \mathbf{1}_{i,j} F_j^3 \\ &+ \sum_{i=1}^n d \mathbf{1}_{i,j} \left| F_j^3 \right| \end{split}$$

- Certain parameters in the model should not co-exist no matter what experimental design is used
- The figure to the bottom right shows response surfaces of various effects from the model
- Variance Inflation Factors are used to show multicollinearity between model parameters

Johnson, T. H., Parker, P.A., Landman, D., "Calibration Modeling of Nonmonolithic Wind-Tunnel Force Balances," AIAA-46356-110, AIAA Journal of Aircraft, Vol. 47, No. 6, Nov-Dec 2010.

Non-Monolithic Calibration Design

Eq#	Model	Parameters	Design	# of Runs
1	Independent	28	2 CCDs	128
2	Cubic	55	Draper	228
3	Absolute Value	34	Draper	228
4	Indicator Variable	28	2 CCDs	128

(1)
$$R_i = a_i + \sum_{j=1}^n b 1_{i,j} F_j + \sum_{j=1}^n c 1_{i,j} F_j^2 + \sum_{j=1}^n \sum_{k=j+1}^n c 3_{i,j,k} F_j F_k$$

(2)
$$R_i = a_i + \sum_{j=1}^n b 1_{i,j} F_j + \sum_{j=1}^n b 2_{i,j} F_j^2 + \sum_{j=1}^n \sum_{k=j+1}^n b 3_{i,j,k} F_j F_k + \sum_{m}^n \sum_{j=m+1}^n \sum_{k=m+j+1}^n b 4_{i,m,j,k} F_m F_j F_k + \sum_{j=1}^n b 5_{i,j} F_j^3$$

(3)
$$R_i = a_i + \sum_{j=1}^n b 1_{i,j} F_j + \sum_{j=1}^n b 2_{i,j} |F_j| + \sum_{j=1}^n b 3_{i,j} F_j |F_j| + \sum_{j=1}^n \sum_{k=j+1}^n b 4_{i,j,k} F_j F_k$$

(4)
$$R_i = a_i + \sum_{j=1}^n b 1_{i,j} F_j + \sum_{j=1}^n \Psi_{i,j} Z_{i,j} F_j + \sum_{j=1}^n \sum_{k=j+1}^n b 4_{i,j,k} F_j F_k$$

Outline

- 1. In-Flight Force Measurement Method
- 2. Non-monolithic Calibration Design
- 3. Variable Acceleration Calibration System
- 4. Center of Gravity Determination Method

- What is a calibration system?
- What is the problem?
 - Calibration of large-scale internal wind tunnel force balances is expensive and inefficient.
- Why does it matter?
 - Large balances are needed for experimentation in NASA wind tunnels
 - Needed for full-scale wind tunnel test or semi-span tests
- Who does it matter to?
 - Force balance community, wind tunnel researchers, project engineers
- Project Objective
 - Design, fabricate and test two proof of concept variable acceleration calibration systems
 - Verify the applied load accuracy is within the predicted bounds
 - Propose next stage of system development

- Novelty of approach
 - Applies centripetal and gravitational force to a balance to reduce the time associated with moving weight

1. Design Experiment

- 3 Factors: Normal Force (NF) (lbs), Axial Force (AF) (lbs), Pitching Moment (PM) (in-lbs)
- 3 Responses: NF (volts), AF (volts), PM (volts)
- Fully replicated central composite design in two blocks

2. Physics Model

3. Mechanical Design

4. Run Experiment

5. Verification

	NF (lbs)	AF (lbs)	PM (in-lbs)
Balance Design Loads	100	60	800
Calibration Loads	30	20	120

1. Design Experiment

2. Physics Model

3. Mechanical Design

4. Run Experiment

5. Verification

 Develop a physics-based prediction model to determine independent variable settings required to apply loads

$$X = [\omega \quad R \quad D \quad T_x \quad L \quad \theta \quad \phi \quad \alpha \quad m]$$

 Determine predicted uncertainty using propagation of uncertainty analysis

$$U_{pred,NF} = \sqrt{\sum_{j=1}^{9} \left(\frac{\partial NF}{\partial X_{j}} u_{X_{j}}\right)^{2}}$$

$$\boldsymbol{u}_{X} = \begin{bmatrix} u_{\omega} & u_{R} & u_{D} & u_{T_{x}} & u_{L} & u_{\theta} & u_{\phi} & u_{\alpha} & u_{m} \end{bmatrix}$$

 Predicted independent variable uncertainty contributions shown to right for each run in calibration experiment

 Design Experiment

2. Physics Model

3. Mechanical Design

4. Run Experiment

5. Verification

Centered System

1. Design Experiment

2. Physics Model

3. Mechanical Design

4. Run Experiment

5. Verification

NSES

- Design Experiment
- predicted uncertainty

2. Physics Model

3. Mechanical

Design

- Predicted uncertainty contains
 - Uncertainty predicted using propagation analysis

Verify applied load error is within

- Balance measurement uncertainty
- Pure error (noise)
- Applied Load error is the physics model predicted loads minus balance measured loads (shown in red in figure to right)
- 4. Run Experiment
- Residual Analysis
 - plot applied load error vs. independent variable
 - Plot pure error vs. independent variable graphs

5. Verification

Outline

- 1. In-Flight Force Measurement Method
- 2. Non-monolithic Calibration Design
- 3. Variable Acceleration Calibration System
- 4. Center of Gravity Determination Method

- What is the problem?
 - CAD center of gravity results are not perfect. Experimental verification is often required for space vehicles.
- Why does it matter?
 - Center of gravity info is critical to guidance, navigation and control of spacecrafts.
- Objective
 - Create a inexpensive and efficient experimental method to determine the center of gravity of a space vehicle
 - Provide repeatable and statistically defendable results
- How does it work?
 - Geometry measurements are recorded for multiple test article hang configurations
 - A gravity vector is projected from the hang vertex in each configuration
 - The center of gravity is found by determining the "intersection point" of the multiple gravity vectors.

- CG Method by Tom Jones, NASA LaRC
- My Contribution:
 - Help mature a concept and define the uncertainty
- Reduce uncertainty by reducing prediction uncertainy, quantifying experimental uncertainty
 - Proposed new hang angle to reduce intersection volume uncertainty
 - Orthogonal intersection reduces volume of uncertainty by 15% (compared to 60 deg intersection)

- Gravity vector construction contains uncertainty due to wind and water effects
- Each gravity line was formed using 2-5 photogrammetry targets
- Pairs of targets within each gravity line were use to construct gravity direction

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- The standard deviation was calculated for each line in each hang configuration to determine which lines had the most noise
- The lines with the least amount of noise were used for the CG calculation

- The center of gravity calculation was solved using a numerical minimization algorithm
- Objective was to find the point that minimized the distance between the selected gravity vectors
- The minimum distance between a point and a line formed by two points is

$$d = \frac{|(x_2 - x_1) \times (x_1 - x_0)|}{|(x_2 - x_1)|}$$

- The minimum distance was found with respect to each gravity vector.
- The numerical algorithm minimized the sum of squares distances
- A Monte Carlo was run that perturbed the mean gravity vector directions by the standard deviations of each line

The following results were obtained

	X (in)	Y (in)	Z (in)
Mean	135.81	1.83	2.33
2σ	1.23	0.87	0.93

Conclusion

 Four examples of measurement uncertainty and characterization projects were presented that highlighted the benefits of design of Experiments

Special Thanks to:

- In-Flight Force Measurement
 - Curt Larsen, NESC Johnson
- Non-monolithic Calibration Designs
 - NASA Aeronautics Test Program (ATP), GSRP program
- Variable Acceleration Calibration System
 - NASA LaRC Engineering Directorate, Co-op Program
- Center of Gravity Determination Method
 - Tom Jones, NASA LaRC
- Ray Rhew, Peter Parker and Drew Landman